Design Process Journal
	September 15th, 2005:

	15 minutes were spent discussing instructions for our assembly code. Final decision resulted in 11 true instructions and 3 pseudo instructions. Agreed upon the usage of a 16-bit processor. Also agreed upon setting 2 registers to constant values, of 1 and zero. List of true instructions is as follows:

· add

· or

· lw

· sw

· li

· j

· beq

· bne

· neg

· slt

· sll

Pseudo instructions are as follows:

· la

· gcd

· lcm

	September 17th, 2005:
	Discussed possible usage of 64-bit size instructions, rather than 16- or 32-bit instructions. Decided to make the hardware easy, and increase the number of pseudo instructions, also decided to use an ori instruction, along with the list from September 15th. Instructions are of fixed length, 16-bit, the first 4 bits will be the operator number (i.e. add). The next 12-bits will be the operand areas. Add will be operation number 10, agreed to use every number from 0-31. Discussed registers being used as I/O registers rather than for one function. Agreed on 32 registers, with the following assignments:

· $zero: always has the value 0, register 0

· $one: always has the value 1, register 1

· $as0-$as3: reserved for assembler use, registers 2-5

· $t0-$t9: volatile storage, registers 6-15

· $k0-$k1: kernel reserved register, registers 16-17

· $s0-$s7: storage which is consistent against function calls,registers 18-25

· $f0-$f3: storage space for arguments and return values from function calls, registers 26-29

· $pc: holds address of next action to be executed, register 30

· $sp: the pointer to the next operation, register 31

Discussed possible instruction Subtract from Stack Pointer, to move the Stack Pointer. Currently 15 true operations exist, and 9 pseudo instructions. For more detailed information, please reference the design documents. Cut the general purpose registers from 32 to 16, see the design document for more detailed information.

	September 21st, 2005
	Added new true instruction, asp (access special register). This instruction reads/writes to the 128 special registers. These registers need to be divided. Bne is also changed, taking 2 source registers and a jump register, now acting by testing the equality of the 2 values in the source registers jumping to the address stored in the jump register. Updated the gcd program, due to a register usage error. Used more temp registers then allotted, fixed this error by overwriting some of the temp registers. Dissention occurred between group members over the number of special registers available, it was agreed we DO have 128 special registers, although discourse was created over the possibility of only 64 special registers. 4 new pseudo instructions were added, wrasp (write/access special register), and reasp (reads value in the special register), and bne and beq were changed to pseudo instructions. This brings the number of pseudo instructions to 15 instructions. Decided to cut all storage registers from the general purpose registers, reallocating 3 for assembler use and 2 for temp use. Agreed on the following assignments for the 128 special registers:

· $disp0-$disp3: Display registers (hardcoded registers)

· $4: CURRENTLY RESERVED FOR LATER USE

· $sw05: Switch register

· $s00-$s29: Storage registers, registers 50-80

· $6-$49, $81-$127: CURRENTLY RESERVED FOR LATER USE

We also coded the true instructions for the following pseudo instructions: jsp and rsp. They’re written as follows:

Jsp label

Lui $as0, 0x0000

Lli $as0, 0x0000

Add $sp, $sp, $1

Add $sp, $sp, $1

Or $as1, $0, $0

Lli $as1, 0x6

Add $as1, $pc, $as1

Sw $as1, 0($sp)

Bne $0, $1, $as0

Rsp

Neg $as0, $1

Add $as0, $as0, $as0

Add $sp, $sp, $as0

Lw $as0, 2($sp)

Bne $0, $1, $as0

	October 1, 2005
	Decided upon 32 special purpose registers and allocated special purpose register 6 to be the PC, and 7 to the EPC, this allowed us to make a new function general purpose register (f2) as register number 14. We decided to forgo any need for a kernel register, rather we’ve decided to use our temporary registers in order to deal with exception handling.

In the assembly language specification: The pseudo instruction bne has been renamed bnel, and beq has been renamed beql. This change was made to make coding the assembler easier.

The mult and div instructions have been dropped entirely due to their complexity. Jep and rep have been added for the purpose of exception handling.

We sat down and figured out what we needed to do for each of our instructions and came up with our RTL, which can be located towards the bottom of the design document. We’re essentially using the same notation as found in class, and all assumptions may be found alongside the RTL.

	October 3, 2005
	Added the preliminary components list (see the design document) and modified the RTL for SPReg[6=PC].

Noted that we need an IR, an operational unit (comparator), all to be components of the ALU. Comparator will compare the two values, and outputs a value of true if the two input values are equivalent. Also noted we need Reg component, an SPREG component, and a MDR component. Began adding the specifications for the Reg and SPREG components. Removed the MDR component, and added 2 Sign Extender components. We created a 4-bit sign extender and a 12-bit sign extender. Removed EPC from the special purpose registers, and will become a component. Created a less than engine (LTEngine), and a shifter. Debated against a concatenator unit, and added a control unit. Changed minds and added a concatenator unit.

Updated the RTL specs to omit the use of Sum. Added the test plan for the RTL specs. Covered infinite loop cases, and the possible overallocation of resources.

	October 16, 2005
	Made changes to RTL and assembly language, and component list based on the meeting on Tuesday, October 11, with Dr. Chidanandan.

Began implementing the datapath by drawing it out with Xilinx, rather than use Visio so that we wouldn’t have to re-implement our work in Xilinx. Drew ideas on whiteboard in BSB basement. Successfully decided on 11 components from our datapth. See design document for information.

	October 17, 2005
	NOTE: Discovered keyboard shortcuts in Xilinx result in catastrophic failure. Continued implementing the datapath in Xilinx. 9 generic and/or specific components of our list are completely laid out:

· IR

· Storage Regsister
· PC

· MDR

· OROut

· Sum

· Comparator

· OR

· Adder
Continued working, briefly sidetracked by the ability to put a Gigabit Ethernet card onto our project. Refocused, and laid out a Less Than Engine. Encountered errors with Xilinx and saving the updates to our project. Xilinx was unaware of the updates we made to our layout, so spent approx. 10 minutes analyzing and tricking Xilinx into being aware of updates made to our software. Noted that later steps will include writing combination logic to make a successful shifter. Contemplated using a complementer and adding 1 to make our shifter work properly, due to problems with sign extended values. Need to lay out sign extenders, concatenators, and a control unit. After much fighting with Xilinx, we successfully created a sign extender for 12 bits. All components except for the 8-bit sign extender have been laid out. Once the 8-bit sign extender is created, we will be able to wire all of our components together.

	October 18, 2005
	Description for control signals written. Integration and unit tests were written. Very brief meeting, with no discussion as to how tasks were to be completed. Tasks were assigned, and members set out to finish them.

	October 24, 2005
	6 components of the datapath were noted incomplete:
· Single-word Store

· Control Unit

· Variable Shifter

· SPReg

· Reg

· Memory

Also decided to use a finite state machine rather than microprogramming. Added inputs for switches on the SPReg and buttons on the control unit, and outputs for a 7-segment display on the special registers. Divided up the 6 components amongst the team. Assigned unit testing of each component to its creator. Each member began their tasks with no real discussion as to how the tasks would be done. This decision will be left up to the discretion of each group member.

	November 2,

2005
	We met to discuss and work on the completion of Milestone 5. Since we have the datapath laid out in Xilinx and all our individual components built, our goal today will be to test and integrate our pieces as completely as possible. Our first objective was to synthesize the control unit, as it is the only piece that is not fully operational yet. Having accomplished this, we placed the Control Unit alongside its brethren components.
Changes to RTL – Increased interrupt handling to two cycles

Changes to Control Unit – Renamed control signals so StateCad wouldn’t throw a fit.

