♩♫♭♪♮♬ 
(Do de-do, dum da-dum)

Mach V Processor Architecture
Team #: 1-04

Guy Builta

Keith Kaffenberger

Dante LaRocca

Michelle Mariani

Table of Contents
Executive Summary








          2

Introduction









          3
Milestones









          4

Milestone 1 - Assembly Language and Machine Language Specifications
          4
Milestone 2 – Register Transfer Language Specification


          5
Milestone 3 – Datapath Design and Component Specification

          6
Milestone 4 – Control Unit Design and Component Implementation
          7
Milestone 5 – Component Integration and Datapath Testing


          8
Milestone 6 – Final Project and Documentation



          8
Conclusion









        11
Performance Evaluation







        12
Executive summary
The Mach 5 processor is a 16-bit fixed length instruction processor capable of running a program stored in an external memory module.  In particular, it was constructed to be able to run a program to determine the smallest relatively prime value of a number using Euclid’s algorithm.  Our method for constructing the processor was to use Xilinx’s schematic tool to build the individual components from the ground up.  The result of our work is that, while the program was unable to successfully run the Euclid’s algorithm program, each individual instruction was verified as working correctly in a Model Sim test bench.  Our conclusions are that our processor works to specification, and with more time and debugging, it will be capable of successfully running our program.

Introduction
Introduction to the Mach 5 Processor Architecture


The purpose of our project is to create a miniscule instruction set processor capable of executing a program stored in an external memory module.  To accomplish this, the processor must be capable of performing various arithmetical and logical operations.  In particular, we want to implement a design capable of running a program to determine the relatively prime value of two numbers.  Once the processor is implemented, it must be tested and debugged to ensure proper operation and a final clock speed and gate count can be acquired.


The purpose of this report is to demonstrate our processor’s performance and compare it with the elicited requirements.  It also informs the reader of our construction, operation, and evaluations of alternatives.  Additionally, it will give an impression of the direction our design took during each milestone.


Our processor, named The Mach 5, was built with easy implementation as our main goal.  It contains 16 addressable general purpose registers and 32 addressable special purpose registers.  As many parts as possible were created using Coregen to save time and make testing more convenient, but most of the parts were created using the schematic tool in Xilinx.
Milestones
Milestone 1 – Assembly Language and Machine Language Specifications:


The requirements that needed to be satisfied for this milestone were to give a detailed description of an assembly language that we created strictly for our processor, and to give a detailed description of an assembler created for our assembly language and processor.  We decided to use a 16-bit architecture style, thus having 16-bit length instructions, 16 addressable instructions, and 16 general purpose registers.  However, we had 128 special purpose registers.  The downside to having only 16 general purpose registers was that we had to omit all saved registers and limit our number of temporary registers to six (the use of these registers is modified later in Milestone 2).  Because of this, we had to write commands to access the special registers so that we could use them as volatile storage space.  The upside to these commands is that we had quite a bit of volatile storage available to us in our special purpose registers (the use of some of these registers is modified later in Milestone 2); however the nature of these registers gives these commands a downside since they are special purpose registers.  Given the constraints of the project, we didn’t see a benefit in using a larger architecture for our chosen assembly language style.  In fact, analyzing the assembly language and the assembler, using a 32-bit architecture would not have made any significant difference in our project, and in fact may not have even fit on the chip we used.  Our assembly language was unique in the aspect that we had the instructions for the special purpose registers and a multiply instruction (that will later be removed, see Milestone 2).  Our general purpose register assignments were unique in that we had a general purpose register always assigned to a value of one, $1, along with a register always set to zero, $0.  We also did not have a register reserved for kernel usage (changed in Milestone 2), or any registers for saved values.  Our special purpose registers were unique in the fact that we had 128 special purpose registers that were assigned solely for storage of internal information or information from the LED display and the switch (some of the volatile storage for internal information will be reassigned in Milestone 2).  To see a more specific description of all the register assignments, see the Design Document for Milestone 1.  For more on the assembly language commands please refer to the Design Document for Milestone 1.  At this point in the project, there were no improvements to be made that we could have foreseen with our knowledge at that point in time, and the requirements for the current milestone.  
Milestone 2 – Register Transfer Language Specification:


For Milestone 2, the requirements asked that we break all of the assembly language instructions down into register transfer language, explain the register transfer language, list the hardware components necessary to implement the RTL, and provide explicit descriptions of the hardware components.  In this Milestone, we updated our assembly instructions and our register assignments to better suit our project.  This included omissions and additions to our assembly language (see the Design Document of Milestone 2 to see the updates to the assembly language).  We also modified the assignments of some of our registers, most notably, the addition of a register to the general purpose registers for kernel use.  To see all of the reassignments of register usage, see the Design Document of Milestone 2.  Looking over our RTL specifications that we made for Milestone 2, the specifications themselves were not very unique in the sense that we did not have any cycles that broke the mold.  The pro to our RTL was that it didn’t take very many cycles.  There weren’t really any cons to our RTL that we knew about at this point.  However, we did realize in Milestone 3, that we made an error in Milestone 2 with Cycle 1 of our RTL (see the RTL specifications in Milestones 2 and 3 for explicit details).  Because we have a 16-bit architecture, the PC should be incremented by 2, and not 4.  This error is fixed in Milestone 3.  Our hardware specifications for the RTL however, were very unique.  As a group, we opted to omit having an ALU, and instead break it down into components.  In hindsight, the group felt that this was still the best decision, as it greatly reduced the number of gates necessary to implement the whole processor.  Surprisingly, this created few problems, and we could find few cons to this choice, other than minor implementation hitches, like any others we would have had if we had used an ALU.  
Milestone 3 – Datapath Design and Component Specification:


Milestone 3 required that we map out our datapath by specifying the location, inputs, and outputs for all of our hardware that we specified in the previous milestone.  It also required that we describe the hardware with enough detail to be implemented in Xilinx.  The best choice that our group made for this stage of the project was to do the mapping directly in Xilinx rather than use Microsoft Visio.  This cut down on quite a bit of work for us in this step and later milestones.  However, we did receive some difficulty with Xilinx due to the fact that we were attempting to create a processor with empty hardware units.  Still, the fact that we mapped out our datapath in Xilinx to begin with made it much easier for us to fully implement the hardware.  Once again, in retrospect, our group would not have chosen to do the mapping any differently, unless we found better software to work with than Xilinx.  But since resources were limited, we used the best ones we could.  For the most part, the mapping of the components was fairly simple; the only problems encountered that weren’t software related were just from confusion from errors in our previous milestones.  For example, since our architecture is a 16-bit architecture, in our last milestone, we said we should increment the PC by 4.  This was an incorrect error, made simply from all our work with MIPS, which we realized when we began mapping out our components in Xilinx.  Other errors like this presented themselves as the work went on; the fixes to the previous milestones can be seen with the work done on Milestone 3.  To implement fully working hardware components, we used mostly Coregen to create the components.  In some cases, Coregen created components that didn’t work properly as was evidenced by testing, so these components were created in Verilog or using the schematic editor in Xilinx.  The pro to using Coregen was that it was very fast, much faster than using Verilog or Xilinx.  The downfall to this was that we couldn’t always be sure if the hardware was implemented properly until we tested it, unlike in the schematic editor or in Verilog, where error messages are given before testing takes place.  Overall, though, Coregen worked out well for most of the components, and little time was spent using Xilinx or Verilog to implement the rest of the hardware.  To see the actual datapath and hardware implementation, please reference Milestone 3.
Milestone 4 – Control Unit Design and Component Implementation:


The requirements for Milestone 4 that had to be satisfied were quite easily satisfied due to our work on the pervious milestone.  We were required to create the control unit for our datapath, using combinational logic, a finite state machine, and microcode.  We also were required to finish implementing fully working hardware components.  Finishing the hardware components posed some difficulty with using Verilog, for example, the Single Word Storage units (see Milestones 2 and 3 for exact specifications of this component).  One of these units required an enable, whereas the other did not.  Because of the errors Xilinx gives, it was difficult to figure out what the problem was with the Verilog code.  Many hours were spent attempting to figure out if the enable input was the problem, and in the end, it was simply that the allocation of space for the output was not written in the Verilog code.  Probably the most unique thing about our hardware, besides the fact that we decided not to have an ALU, is that we made an actual concatenator unit rather than crossing wires to concatenate numbers.  The pro to this was that we were able to organize the concatenator better than just routing wires.  This also prevented the problem of routing the wires incorrectly.  However, this did create the problem of incorrectly implementing this in the schematic editor, but this was easily countered with the required testing of all the units to make sure that they worked.  The control unit was created solely in StateCad, which was much easier than using microprogramming.  Because it was fairly easy to visualize all the states for our processor, we felt that StateCad was the best way of implementing the control unit.  Given another opportunity, we were certain that we would not use any other form of implementation than StateCad.  The downside to using StateCad was that it gave many error messages that were unnecessary (i.e. error messages concerning things that weren’t really errors).  Also the concatenator in StateCad was ludicrous because you could not concatenate anything but bits, and could only concatenate 1-bit literals.  Therefore we encountered the rather tedious task of concatenating 16-bit values for our architecture.  To see all testing plans and individual component implementations, please look at Milestone 4.  
Milestone 5 – Component Integration and Datapath Testing:


For Milestone 5, we were asked to fully implement and integrate the datapath, begin testing the datapath to see if it was fully functional, and make any changes to the RTL, datapath, or control unit if necessary.  At this milestone, we had no need to make any changes to our datapath or control unit that we were aware of.  However, we realized at this point that we had done our RTL wrong throughout the whole project.  We unfortunately overestimated the number of cycles necessary for each instruction.  These updates can be seen in Milestone 6 under the description of the RTL specifications.   Nonetheless, due to excellent planning, we encountered no major problems or glitches in merging our datapath and our control unit.  Since we mapped out the datapath in Xilinx to begin with, the hardware was already present from the work done for the last milestone.  We found no reason that would deter us from taking that path of steps again, as we had to do very little work during this milestone other than to satisfy the requirements of this milestone.  All of the results of our previous work made the implementation of the datapath quite simple, the only real task we had was to place the control unit into the datapath and connect the inputs and outputs.  The only problem we encountered with full implementation of the datapath, aside from the discovery of incorrect RTL specifications, was that we created the LTEngine wrong according to our specifications.  This was quickly fixed though after testing.  There was nothing at this stage that could be said to be unique; most of the design and creation stages were done at this point in the project.  
Milestone 6 – Final Project and Documentation:

For the final milestone, we were asked to update and make any changes necessary to have a working processor.  However, requirements specified that we could not make any changes to our assembly language or machine language specifications.  This did not create any problems for us, as no updates needed to be made to these parts of our project.  Unfortunately, during the final stages of our project, many errors were encountered that were unexpected, creating a lot of difficulties to finish the project.  When we tried to run the programs we had written, Xilinx output some very unexpected behaviors.  There was no warning of this, as all of our instructions tested properly individually in the previous milestone, so no one could have foreseen the errors that began to arise as we tested our programs.  The only pro in this milestone was that we thought we had most of the work done and could simply just test our programs and be done.  Unfortunately this had many drawbacks.  The Euclid’s algorithm program, written almost 6 weeks prior to testing, was not looked at until we tried to run it through our processor.  Because we didn’t look at the program until we tried to test it, there were errors in it due to the updates that had been periodically made to our project.  In hindsight, we probably would have looked at the program and updated it every time we made changes to the project, but sadly, that was not the case.  As a result of our neglect of the Euclid’s algorithm program until this point, we spent several hours trying to debug the program and handle the errors given by ModelSim and Xilinx.  As testing continued, we found that we had issues with running a series of commands through the datapath.  Regrettably, Xililnx did not facilitate finding a solution for our problems; it in fact hindered our success in creating a fully working processor.  We finally figured out some of the problems; it seems that when using our branch instruction, when placing values in the register, the registers were not given time to stabilize the values inside them before the branch instructions tried to use said values.  This problem was fixed by putting a stall in the command, and rewriting a few states for our control unit.  Sadly, this did not fix all of our problems, as we could not figure out all the timings issues before the deadline for the submission of our datapath.  After many hours of diagnosis, we found out that the ultimate problem with our datapath was only an issue of timing.  However, the fix to this would be to add stalls to many of our instructions, and adding quite a few more states to our StateCad diagram, therefore rewriting most of the control unit.  The biggest improvement we would have made to all of this would have been to make the datapath work properly, so this creates a whole set of improvements that would have to be made to the control unit.  We would change the BEQ instruction from being instruction zero to something else, and also would have implemented a logical NAND rather than a logical OR due to the fact that NAND can emulate nearly all scenarios we would have encountered.  Overall, though, there weren’t too many changes that the group felt would be necessary to make to our project other than the aforementioned changes.
Conclusion
Unfortunately, because we could not successfully get a program to run through our datapath, we can not give completely accurate performance reports.  All of our data was calculated by hand, and is as accurate as we could possibly be without an actual working model.  
When running the synthesis in Xilinx to retrieve a gate count, we were given a result of 1,026 gates in our datapath.  This seemed to be slightly off, so after synthesizing again, only a few hours later, our gate count suddenly dropped to 126 gates.  Knowing this number is incorrect, we can only give 1,026 as an estimate of our true gate count, as we did not have time to calculate this number by hand, nor did we want to.  
To calculate the number instructions necessary to calculate the number relatively prime to 0x13B0, we used java to count the number of instructions that were run when using our program to calculate the relatively prime number.  This is why we resulted in 81,906 instructions to calculate the relatively prime number of 0x13B0.  The actual number of instructions in the Euclid’s algorithm program is 46 instructions.  

With this number, we were able to calculate the number of clock cycles necessary to run this instance of the Euclid’s algorithm, which resulted in a cumulative number of 420,070 clock cycles.  Calculating the CPI resulted in a CPI of 5.25 cpi, and calculating the cycle time resulted in 9.899 ns.  Using these numbers, we were able to calculate the time necessary to run the Euclid’s algorithm to find the relatively prime number of 0x13B0, which was 0.0042 s.  
Overall, if our processor would have run the Euclid’s algorithm program properly, or any other program properly for that matter, we would have been more able to give better accuracy than theoretical calculations.  Nonetheless, based on our calculations, we feel it is safe to assume that if the processor would have run programs correctly, that it would have been fairly efficient.
Performance Evaluation
	Gate Count
	126

	Cycle Time
	9.899 ns

	Number of Instructions for GCD
	81, 906

	Number of Clock Cycles
	420,070

	CPI
	5.25

	Execution Time
	0.0042 s


