Design Process Journal
	September 15th, 2005:

	15 minutes were spent discussing instructions for our assembly code. Final decision resulted in 11 true instructions and 3 pseudo instructions. Agreed upon the usage of a 16-bit processor. Also agreed upon setting 2 registers to constant values, of 1 and zero. List of true instructions is as follows:

· add
· or

· lw

· sw

· li

· j

· beq

· bne

· neg

· slt

· sll

Pseudo instructions are as follows:

· la

· gcd

· lcm

	September 17th, 2005:
	Discussed possible usage of 64-bit size instructions, rather than 16- or 32-bit instructions. Decided to make the hardware easy, and increase the number of pseudo instructions, also decided to use an ori instruction, along with the list from September 15th. Instructions are of fixed length, 16-bit, the first 4 bits will be the operator number (i.e. add). The next 12-bits will be the operand areas. Add will be operation number 10, agreed to use every number from 0-31. Discussed registers being used as I/O registers rather than for one function. Agreed on 32 registers, with the following assignments:
· $zero: always has the value 0, register 0

· $one: always has the value 1, register 1

· $as0-$as3: reserved for assembler use, registers 2-5

· $t0-$t9: volatile storage, registers 6-15

· $k0-$k1: kernel reserved register, registers 16-17

· $s0-$s7: storage which is consistent against function calls,registers 18-25

· $f0-$f3: storage space for arguments and return values from function calls, registers 26-29
· $pc: holds address of next action to be executed, register 30

· $sp: the pointer to the next operation, register 31
Discussed possible instruction Subtract from Stack Pointer, to move the Stack Pointer. Currently 15 true operations exist, and 9 pseudo instructions. For more detailed information, please reference the design documents. Cut the general purpose registers from 32 to 16, see the design document for more detailed information.

	September 21st, 2005
	Added new true instruction, asp (access special register). This instruction reads/writes to the 128 special registers. These registers need to be divided. Bne is also changed, taking 2 source registers and a jump register, now acting by testing the equality of the 2 values in the source registers jumping to the address stored in the jump register. Updated the gcd program, due to a register usage error. Used more temp registers then allotted, fixed this error by overwriting some of the temp registers. Dissention occurred between group members over the number of special registers available, it was agreed we DO have 128 special registers, although discourse was created over the possibility of only 64 special registers. 4 new pseudo instructions were added, wrasp (write/access special register), and reasp (reads value in the special register), and bne and beq were changed to pseudo instructions. This brings the number of pseudo instructions to 15 instructions. Decided to cut all storage registers from the general purpose registers, reallocating 3 for assembler use and 2 for temp use. Agreed on the following assignments for the 128 special registers:
· $disp0-$disp3: Display registers (hardcoded registers)
· $4: CURRENTLY RESERVED FOR LATER USE

· $sw05: Switch register
· $s00-$s29: Storage registers, registers 50-80
· $6-$49, $81-$127: CURRENTLY RESERVED FOR LATER USE

We also coded the true instructions for the following pseudo instructions: jsp and rsp. They’re written as follows:

Jsp label

Lui $as0, 0x0000

Lli $as0, 0x0000

Add $sp, $sp, $1

Add $sp, $sp, $1

Or $as1, $0, $0

Lli $as1, 0x6

Add $as1, $pc, $as1

Sw $as1, 0($sp)

Bne $0, $1, $as0

Rsp

Neg $as0, $1

Add $as0, $as0, $as0

Add $sp, $sp, $as0

Lw $as0, 2($sp)

Bne $0, $1, $as0

	
	
	
	
	

	
	
	
	
	

